Grad course 2019 Page 1

So we can estimate the Hausdortt dimension from above by presenting a cover. How to extrimede it bellow? Det. A measure pr is called h-smooth it to 2 some C and to z every boill B(x,r), m(B(x,r)) < Ch(r). Thm (Mass distribution principle). Let m (k) > 0 hor zome h-smooth measure, thick mp (k) > H h(k) > m(k) where (is the constant in the definition of h-smoothkey Prost. Let (k,) be any cover of K, Then K, EB(K, diam k, i) Then M(h) & EM(K, i) & ECh(diam K, i). Toke int over Constlory. It M(K) >0 For work d - servet measure (M(B(X,r)) = Cr2) the I-Id'M K ? 2

Using this, it is easy to prove that $|-|\dim C = \frac{\log 2}{\log 3}(C - the usual Cantorset)$. Construct μ by assigning $\mu(J_{k}^{*}|=z^{-h})$ to z any interset $I_{k}^{*} \in C_{n}$, $\mu(C|=1)$ and notice that for $3^{\prime} \tilde{s} V e^{\gamma^{-h} t}$, B(x,r) intersects at most one I_{k-1}^{*} , so $\mu(B(x,r)| \leq 2^{-h+1} \leq 2\mu \frac{\log 2}{\log 3}$, so μ is $\frac{\log 2}{\log 3} - \operatorname{smooth}$. Thus $\frac{\log 2}{\log 3} \leq \operatorname{Hdim} C \leq \operatorname{Mdim} C = \frac{\log 2}{\log 3}$.

der Dimension of a measure: M-Borelmeasure: Med dim m = int (Hdim A: m(A^C)=0, A CIR - B OPEN); Another, equivalent, der dim m = int (d: m Im); Lowe V dimension of a measure: dim m:= int (Hdim A: m(A) > D, A C (R^m-B)OVEN);

Grad course 2019 Page 2